TERROOMSMAA PECYPCA FILEPHLIX SHEPFOYCTAHOBOK

Оглавление

Список сокращений
Глава 1. Пределы форсирования процесса теплообмена в РУ
1.1. Актуальные проблемы совершенствования ТГРК
1.2. Проблемы расчетного определения кризисов теплоотдачи
в реакторных каналах
1.3. Структурная динамика предкризисной области
на теплоотдающей поверхности ТВЭЛ
1.4. Особенности механизма кризиса теплоотдачи в ВОЯР 54
1.5. Физика кризиса теплоотдачи 2-го рода на поверхности ТВЭЛ 60
1.6. Методологические аспекты расчетного определения КТП
в каналах ВОЯР
1.7. Проблемы надежности экспериментальных данных по КТП в ПК 83
1.8. Актуальные проблемы расчетного определения
КТП в ТВС ВОЯР
Глава 2. Вопросы расчетного анализа теплофизических процессов
в ВОЯР на основе современных версий ТГРК 109
2.1. Проблемные вопросы расчетных оценок аварийных переходных
процессов в реакторах водо-водяного типа
2.2. Экспериментальное оборудование и методические подходы
к интегральной верификации ТГРК
2.3. Нейросетевой диагностический подход к локальной верификации
расчетных зависимостей по началу кипения в ТВС
2.4. Современные физико-математические модели двухфазного потока
в его пузырьковой и дисперсной структурных формах
2.4.1. Распределение размеров капель
в дисперсном режиме течения 140
2.4.2. Структура пузырькового двухфазного потока
2.4.3. Обобщение зависимости скорости всплытия
газовых пузырей в жидкостях от их размера
2.4.4. Теплоотвод от восходящего пузырькового
двухфазного потока
2.5. Некоторые задачи теплофизического расчета ЯР
и оборудования АЭС
2.5.1. Температурные поля ТВЭЛ
2.5.2. Оценка предельно допустимой скорости изменения
температуры элементов конструкции реактора 169
2.5.3. Методика расчета локальных параметров теплоносителя
в реакторном канале с учетом особенностей ТГЯ 173
2.5.4. Физические особенности кризиса теплоотдачи
в каналах сложной формы

2.5.5. Учет межканальных перетечек теплоносителя	
в тепловом расчете АкЗ	185
2.5.6. Истинное объемное паросодержание в подъемной	
ветви контура циркуляции	188
2.5.7. Расчетная оценка истинного объемного паросодерж	сания
в емкости под давлением при ее разгерметизации	191
2.5.8. Закризисная теплоотдача от поверхностей,	
ориентированных в нижнее полупространство,	
и проблема внешнего охлаждения корпуса реактора	
водой в условиях тяжелой аварии	
Глава 3. Диагностические аспекты акустической динамии	си ГЦК РУ . 203
3.1. Особенности развития гидродинамических	
колебательных процессов в РУ	
3.2. Задачи обеспечения виброакустической безопасности	я ЯЭУ 212
3.3. Вопросы оперативного вибромониторинга	
аномальной акустической динамики ГЦК ВВЭР	218
3.4. Методологические аспекты пассивной акустической	диагностики
теплофизических процессов в оборудовании первого кон	тура ЯЭУ236
3.5. Систематизация методологических подходов к автом	атическому
распознаванию стохастических сигналов систем пассивн	
оперативной диагностики основного оборудования АЭС	248
3.6. Прикладные аспекты реализации алгоритмов автомат	
распознавания аномалий в элементах и системах ЯЭУ	
Глава 4. Методология многомерного геометрического под	хода
к автоматическому распознаванию теплогидравличес	ких
аномалий в АкЗ ВВЭР по параметрам нейтронного шу	/ма 287
4.1. Анализ существующих подходов к определению реж	има
начала кипения теплоносителя	
на теплоотдающей поверхности ТВЭЛ	287
4.2. Спектральные и корреляционные характеристики	
двумерных диагностических сигналов	
в задачах триангуляционной диагностики ТГП в ЯР	294
4.3 Физические особенности диагностики ТГП в ЯР	
по параметрам акустического и нейтронного шумов	309
4.4. Анализ информационной значимости спектральных пара	
нейтронного шума в реакторах водо-водяного типа	
4.5. Методика формирования признакового пространства	
для распознавания областей локализации ТГП в ТВС ВВЗ	P 339
4.5.1. Когерентный спектр как мера корреляции	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
двумерного случайного процесса	339
4.5.2. Алгоритм вычисления выборочной оценки	
когерентного спектра двумерного диагностического си	гнала
и программно-технические средства для его реализаци	

4.6. Особенности физической взаимосвязи параметров
нейтронного шума с процессом генерации паровой фазы
на теплоотдающей поверхности ТВЭЛ в ВВЭР
4.7. Анализ информационной значимости двумерного
диагностического сигнала нейтронного шума в АкЗ ВВЭР 357
4.7.1. Конструктивные особенности исследовательского канала
реактора ВВЭР-70. Измерительно-регистрирующий
комплекс и методика проведения экспериментов 357
4.7.2. Результаты экспериментального исследования спектральных
параметров нейтронного шума в АкЗ ВВЭР
4.8. Вопросы компьютерной реализации многомерной геометрической
модели распознавания теплогидравлических аномалий
в ТВС ВВЭР по параметрам нейтронного шума
4.8.1. Особенности идентификации ТГП на теплоотдающей
поверхности ТВЭЛ при наличии ограничений
на получение априорной статистической информации 380
4.8.2. Математическая модель распознавания
теплогидравлических аномалий в ВВЭР
на основе многомерного геометрического подхода
4.8.3. Теоретические аспекты реализации автоматического
многомерного линейного классификатора аномальных
и предаварийных ТГП в ВВЭР
4.8.4. Алгоритм максимизации квадратичной формы
на основе метода сопряженных градиентов
4.8.5. Алгоритм формирования оптимальной разделяющей
гиперплоскости с минимизацией ошибки распознавания.
Пример практической реализации алгоритма
Глава 5. Показатели надежности основного оборудования АЭС
Управление надежностью ЯЭУ
5.1. Работоспособность ЯЭУ и признаки ее отказов
5.2 Актуальные проблемы повышения эксплуатационной
надежности и ресурса ЯЭУ
 5.3. Принципы нормирования надежности
5.4 Методические подходы к управлению надежностью
оборудования ядерных энергоблоков
5.5. Особенности определения количественных показателей
надежности ЯЭУ
5.6. Математическая формализация законов
эксплуатационной безотказности, восстанавливаемости
оборудования ЯЭУ и его долговечности
5.7. Комплексные показатели надежности ЯЭУ
5.7. Комплексные показатели надежности ИЗУ 44-5 5.8. Нормируемые показатели надежности ЯЗУ 453
• • •
Глава 6. Методология расчета структурной надежности ЯЭУ 457

6.1. Общая характеристика методов оценки надежности ЯЭУ 457
6.2. Исходные данные для расчета структурной надежности ЯЭУ 462
6.3. Методика расчета приведенного параметра потока отказов и
коэффициента готовности элемента структурной схемы ЯЭУ 469
6.4. Математическая формализация зависимости располагаемой
мощности ЯЭУ от состояния ее структурных элементов481
Глава 7. Методика расчета структурной надежности ЯЭУ
с использованием КГЭ
7.1. Исходные данные о КГЭ
7.2. Определение показателей надежности ЯЭУ
при фиксированных уровнях мощности энергоустановки
7.3. Расчет показателей надежности ЯЭУ в базовом режиме
эксплуатации энергоустановки
7.4. Расчет показателей надежности ЯЭУ в режиме
переменной нагрузки энергоустановки
7.4.1. Расчет показателей надежности ЯЭУ относительно режимных
отказов при вероятностной модели задания требуемой мощности . 505
7.4.2. Расчет показателей надежности ЯЭУ относительно
режимных отказов при задании требуемой мощности
детерминированным графиком508
Глава 8. Расчет структурной надежности ЯЭУ
на основе метода определения критических групп
эксплуатационных состояний ее оборудования510
8.1. Задание исходной информации относительно возможных аварий
энергоустановки на основе матриц критических состояний ЯЭУ510
8.2. Определение коэффициента готовности и приведенного параметра
потока отказов для фиксированных уровней мощности ЯЭУ 516
8.3. Расчет вероятности безотказной работы ЯЭУ
на фиксированных уровнях мощности
с использованием матрицы критических состояний
Глава 9. Основные математические модели для расчета
показателей структурной надежности ЯЭУ
9.1. Методологические аспекты метода расчета структурной
надежности ЯЭУ на основе теории
дискретных марковских процессов
9.1.1. Вычислительные особенности метода
и подготовка исходных данных
9.1.2. Расчет вероятностей возможных состояний ЯЭУ 550
9.1.3. Расчет показателей надежности ЯЭУ
при фиксированных уровнях мощности
9.1.4. Расчет показателей надежности ЯЭУ,
функционирующей по заданному графику нагрузки 560

562
566
566
568
573
577
603
614