Г. И. Тошинский

БЕСЕДЫ О ЯДЕРНОЙ ЭНЕРГЕТИКЕ

(ДЛЯ НАЧИНАЮЩИХ И НЕ ТОЛЬКО)

ФИЗИКА РЕАКТОРОВ И ТЕХНОЛОГИИ МОДУЛЬНЫХ БЫСТРЫХ РЕАКТОРОВ С ТЕПЛОНОСИТЕЛЕМ СВИНЕЦ-ВИСМУТ

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ	3
СПИСОК СОКРАЩЕНИЙ	6
СПИСОК ОБОЗНАЧЕНИЙ	. 11
введение	. 15
Глава 1. ФИЗИЧЕСКАЯ СУЩНОСТЬ ПРОЦЕССОВ, ПРОТЕКАЮЩИХ	
B PEAKTOPE	. 31
1.1. Откуда берется ядерная энергия?	. 31
1.2. Почему осколки деления обладают очень высокой	
радиоактивностью?	. 35
Глава 2. ЦЕПНАЯ РЕАКЦИЯ ДЕЛЕНИЯ. ОСНОВНЫЕ ПОНЯТИЯ	
Глава З. ПРИНЦИП РАБОТЫ ЯДЕРНОГО РЕАКТОРА	. 44
Глава 4. КЛАССИФИКАЦИЯ ЯДЕРНЫХ РЕАКТОРОВ	
4.1. Классификация реакторов по назначению	
4.1.1. Реакторы для наработки оружейного плутония	
4.1.2. Реакторы атомных подводных лодок,	
боевых надводных кораблей и гражданских судов	. 57
4.1.3. Реакторы атомных электростанций	
4.1.4. Атомные станции теплоснабжения	
4.1.5. Атомные теплоэлектроцентрали	
4.1.6. Высокотемпературные реакторы для производства	
высокопотенциального тепла	. 63
4.1.7. Атомные станции промышленного теплоснабжения	. 65
4.1.8. Реакторы ядерных ракетных двигателей и космических летательны	
аппаратов	
4.1.9. Исследовательские реакторы	
4.2. Классификация реакторов по энергетическому спектру нейтронов	
4.2.1. Реакторы на тепловых нейтронах	
4.2.2. Реакторы на быстрых нейтронах	
4.2.3. Реакторы на промежуточных нейтронах	. 76
4.3. Классификация реакторов по типу используемого замедлителя	
нейтронов	. 77
4.3.1. Водный замедлитель (легкая вода)	
4.3.2. Тяжелая вода	. 78
4.3.3. Замедлители из бериллия и оксида бериллия	
4.3.4. Графитовый замедлитель	
4.4. Классификация реакторов по типу используемого теплоносителя	
4.4.1. Легкая вода	
4.4.2. Тяжелая вода	
4.4.3. Органические жидкости	. 85 85
4.4.5. Жидкие металлы	. ō/
4.4.5.1. ЛЕГКИЕ ЖИДКОМЕТАЛЛИЧЕСКИЕ ТЕПЛОНОСИТЕЛИ НА ОСНОВЕ	97
HIGHUMHAN MCINHUK	. n/

4.4.5.2. Тяжелые жидкометаллические теплоносители	
4.4.6. Газовые теплоносители	
4.4.6.1. Углекислый газ	95
4.4.6.2. Гелиевый теплоноситель	95
4.4.6.3. Диссоциирующий газ N_2O_4	96
4.5. Классификация реакторов по принципу преобразования энергии	97
4.5.1. Паротурбинное преобразование энергии	97
4.5.2. Газотурбинное преобразование энергии	
4.5.3. Полупроводниковое термоэлектрическое	
преобразование энергии	98
4.5.4. Термоэмиссионное преобразование энергии	98
4.6. Классификация реакторов по количеству теплоотводящих контуров	98
4.6.1. Одноконтурные реакторы	98
4.6.2. Двухконтурные реакторы	. 102
4.6.3. Трехконтурные реакторы	. 105
4.7. Классификация реакторов по конструктивным особенностям	. 106
4.7.1. Корпусные и канальные реакторы	. 106
4.7.2. Гомогенные и гетерогенные реакторы	. 107
4.8. Классификация реакторов по принципу действия	. 109
Глава 5. ОСНОВНЫЕ ТИПЫ ВЗАИМОДЕЙСТВИЯ НЕЙТРОНОВ	
С ЯДРАМИ ПРИ ЦЕПНОЙ РЕАКЦИИ ДЕЛЕНИЯ	111
5.1. Микроскопические сечения	
5.2. Зависимость микроскопических сечений от энергии нейтронов	. 121
5.3. Макроскопические сечения	
5.4. Средняя длина свободного пробега нейтронов	
5.5. Расчет ядерных концентраций в материалах	. 132
5.6. Расчет гомогенизированных ядерных концентраций	. 134
Глава 6. КОЭФФИЦИЕНТ РАЗМНОЖЕНИЯ НЕЙТРОНОВ	
В БЕСКОНЕЧНОЙ СРЕДЕ	138
6.1. Формула четырех сомножителей	
6.2. Коэффициент размножения на быстрых нейтронах на ²³⁸ U	. 140
6.3. Коэффициент использования тепловых нейтронов	. 143
6.4. Вероятность избежать резонансного захвата на ²³⁸ U	
в процессе замедления	. 149
6.4.1. Основные понятия теории замедления нейтронов	. 149
6.4.2. Расчет вероятности избежать резонансного захвата на ²³⁸ U	
в гомогенной среде	. 156
6.4.3. Влияние гетерогенного размещения урана и замедлителя	
на вероятность избежать резонансного захвата	. 171
6.5. Оптимальная гетерогенность активной зоны	
Глава 7. ЭФФЕКТИВНЫЙ КОЭФФИЦИЕНТ РАЗМНОЖЕНИЯ НЕЙТРО	
В РЕАКТОРЕ КОНЕЧНЫХ РАЗМЕРОВ	
7.1. Вероятность избежать утечки в процессе замедления нейтронов	
7.1. Вероятность избежать утечки в процессе диффузии	0
тепловых нейтронов	. 185
7.3. Расчет критического радиуса реактора	. 187

Глава 8. НЕЙТРОННО-ФИЗИЧЕСКИЕ ПРОЦЕССЫ, ПРОТЕКАЮЩИЕ	
В РЕАКТОРЕ В ХОДЕ ЭКСПЛУАТАЦИИ	190
8.1. Процессы, сопровождающие выгорание ядерного топлива	191
8.1.1. Выгорание ²³⁵ U	192
8.1.2. Накопление осколков деления	199
8.1.3. Накопление ²³⁶ U	200
8.1.4. Образование ²³⁹ Pu	202
8.2. Отравление реактора	212
8.2.1. Отравление реактора ¹³⁵ Хе	
8.2.2. Отравление реактора ¹⁴⁹ Sm	
8.3. Обратные связи в реакторе	
8.3.1. Роль обратных связей в обеспечении безопасности	245
8.3.2. Коэффициенты реактивности в реакторах ВВЭР	
8.3.2.1. Обратная связь по температуре теплоносителя	
8.3.2.2. Обратная связь по температуре топлива	
8.3.3. Коэффициенты реактивности в реакторе РБМК	
8.3.4. Обратные связи в реакторах на быстрых нейтронах	
8.3.5. Особенности управления реактором с различными знаками	
мощностного коэффициента реактивности	278
8.4. Временное поведение реактора при вводе положительной реактивности	
8.4.1. Кинетика реактора без учета запаздывающих нейтронов	
8.4.2. Кинетика реактора с учетом запаздывающих нейтронов	
8.4.3. Динамика аварийного разгона реактора	
8.4.4. Вопросы пуска реактора из подкритического состояния	
8.4.5. Способы компенсации запаса реактивности	
Глава 9. ТЯЖЕЛЫЕ АВАРИИ НА АТОМНЫХ ЭЛЕКТРОСТАНЦИЯХ	
9.1 Краткий анализ аварии на 4-м блоке Чернобыльской АЭС	
9.2 Тяжелые аварии на АЭС «Три Майл Айлэнд» и «Фукусима-1»	
Глава 10. ФИЗИЧЕСКИЕ ПРИНЦИПЫ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ	
	300
10.1. Реактор и источник энергии на органическом топливе:	200
принципиальные отличия с позиций безопасности	
10.2. Факторы опасности реакторов АЭС	
10.3. Экономические аспекты безопасности. Страхование риска	3/9
10.4. Физические и технические принципы обеспечения безопасности	202
реакторов	
10.4.1. Первый класс аварий – реактивностные аварий 10.4.2. Второй класс аварий – аварии с потерей теплоносителя	
10.4.2. В торой класс аварии – аварии с потерей теплоносителя 10.4.3. Третий класс аварий – аварии, связанные с химическими	307
взрывами и пожарами по внутренним причинам	200
	390
10.4.4. Четвертый класс аварий – аварии с потерей расхода	201
теплоносителя через активную зону	
10.4.5. Пятый класс аварий – аварии с течью трубки парогенератора	392
10.4.6. Шестой класс аварий – аварии с потерей внешнего	202
отвода тепла	593
Глава 11. МОДУЛЬНЫЕ БЫСТРЫЕ РЕАКТОРЫ С ТЕПЛОНОСИТЕЛЕМ	
СВИНЕЦ-ВИСМУТ СВБР-100 В ЯДЕРНОЙ ЭНЕРГЕТИКЕ	396
11.1. Опыт эксплуатации реакторов с теплоносителем свинец-висмут	
на атомных подводных лодках	396

11.1.1. Обоснование выбора сплава свинец-висмут	
в качестве теплоносителя	. 399
11.1.2. Краткое описание схемы и конструкции РУ с СВТ	400
11.1.3. Основные научно-технические проблемы,	
решенные в ходе освоения РУ с СВТ	401
11.1.3.1. Технология свинцово-висмутового теплоносителя	401
11.1.3.2. Обеспечение радиационной безопасности	
при работах, связанных с загрязнением воздуха	400
и поверхностей оборудования полонием-210	
11.1.3.3. «Замораживание-размораживание» СВТ в РУ	
11.1.3.4. Обеспечение высокой надежности парогенератора	
11.1.4. Анализ аварий	405
11.1.4.1. Аварии и инциденты на стенде 27/ВТ	
(ФЭИ, г. Обнинск)	405
11.1.4.2. Авария на РУ левого борта АПЛ проекта «645»	406
11.1.4.3. Аварии на РУ опытной атомной подводной лодки	
проекта «705»	410
11.1.4.4. Авария на РУ головной АПЛ проекта «705К»	
11.1.4.5. Аварии на стенде КМ-1 (НИТИ, г. Сосновый Бор)	
11.1.5. Трудности базового обслуживания РУ АПЛ	413
11.1.6. Основные итоги эксплуатации РУ с СВТ	414
11.2. Основные положения концепции РУ СВБР-100	417
11.2. Основные положения концепции г у СВВ -100	417
11.2.1. Оощие принципы	417
11.2.3. Обоснование выбора уровня мощности	420
11.2.4. Внутренняя самозащищенность и пассивная безопасность РУ	421
11.2.5. Топливный цикл и потребление природного урана	121
11.2.5. Топливный цикл и потреоление природного урана	424
11.2.6. Концепция обращения с ОЯТ и РАО	427
11.2.7. Снижение риска распространения ядерных делящихся	120
материалов	429
11.2.8. Модульная структура ядерной паропроизводящей установки	
энергоблока	429
11.2.9. Обеспечение конкурентоспособности ядерной энергетики	
в условиях рыночной экономики	
11.2.10. Возможности многоцелевого применения	433
11.2.11. Соответствие основным требованиям к инновационным	
ядерным энергетическим системам IV-го поколения	434
11.2.12. Концепция коммерциализации	434
ПОСЛЕСЛОВИЕ	
Приложение 1. Г. И. Тошинский. А. И. Лейпунский. Каким я его помню	442
Приложение 2. Г. И. Тошинский. Ядерные энергетические установки	772
с теплоносителем свинец-висмут для атомных подводных лод	
(фрагменты)	440
Приложение 3. М. П. Грабовский. Второй Иван. Совершенно секретно	455
(глава 26)	435
Приложение 4. А. Н. Румянцев. Пророк (фрагмент)	462
Приложение 5. Парадигмы адмирала Риковера	
Об авторе	471